PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY.
Note to be inserted at p. 187, Part I. 1882

CORRECTION TO A PAPER ENTITLED
“ On the Stresses caused in the Interior of the Earth by the Weight of Continents and Mountains.”

Since this paper has left my hands I have discovered an error in the work. The
error does mot affect the physical conclusions, except in one unimportant respect; had it
done so I should probably have found it out long ago.

Throughout the paper the normal stresses P, Q, R require an additional term W, The
only function of these stresses used for obtaining physical results 1s P—R, and it remains
unchanged when the cirrection is made. § 10 must however be erased.

The error takes its origin in § (1). Thomson’s solution (1), when reduced to the form

dp . dw

applicable to the incompressible solid, is the solution of the equations - —F L tovd= -, and

two others. The solution required is that of — %ﬁ+ vya’ =0, and two others. The W

involved in my solution is not the potential of a true bodily force, but only an “effective
potential” producing the same strains as those due to the weight of the continents and
mountains, but causing a different hydrostatic pressure. When therefore p is determined
from Thomson’s solution, that p is really equal to p+ W; of the problem of the continents.

Ef) W;, instead of p:——z—Wi. The correction to

(3) must be ca,rrlnd on through the rest of the paper, and obviously it merely adds W; to
the stresses P, Q, R, leaving P —R unchanged.

Hence equation (3) should be p:—(l +

The error would have been avoided had I, as suggested on p. 190, worked directly from
the equations of equilibrium of the elastic incompressible solid, instead of from Thomson’s

solution.

When the solid is compressible, this method of “effective potential” [see “The Tides
of a Viscous Spheroid,” Phil. Trans. Part 1. 1879, pp. 7—9] for including all the effects
of gravitation, is not applicable without certain additional terms in a, B, . Hence § 10 is
erroneous, inasmuch as the expressions for the strains and stresses are incomplete. The
correction of § 10 (which is not difficult) would require too much space to be carried out

in this note.

G. H. DARWIN.

Aug. 1, 1882,
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In this paper I have considered the subject of the solidity and strength of the
materials of which the earth is formed, from a point of view from which it does not
seem to have been hitherto discussed.

The first part of the paper is entirely devoted to a mathematical investigation, based
upon a well-known paper of Sir Wirrtam TroMmson’s. The second part consists of a
summary and discussion of the preceding work. In this I have tried, as far as possible,

to avoid mathematics, and I hope that a considerable part of it may prove intelligible
to the non-mathematical reader.
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I.
THE MATHEMATICAL INVESTIGATION.
§ 1. On the state of internal stress of a strained elastic sphere.

Let there be a homogeneous elastic sphere, for which w—3v is the modulus of com-
pressibility (or incompressibility, as I shall call it) and v the rigidity.* Take the
centre of the sphere as the origin for a set of rectangular axes , 7, z. Let the sphere
be subjected to no surface stresses, let it be devoid of gravitation, but subject to
internal force such that the force acting on a unit volume-of the elastic solid is expres-
sible by a gravitation potential IV” a solid spherical harmonic of the ™ degree of the
coordinates «, v, z

Let w be the density of the elastic solid, @ the radius of the sphere, and = the radius
vector of any point measured from the centre of the sphere.

Sir WirLiam THoMSON has investigated the state of internal strain produced under
the conditions above described. If a, B, y be the displacements his solution is as
follows :—

aw;

w= (Bt = Fr?) L — G0 L (Wi 1) |

where
6+ 2)0—0]
2(0—1v{[2(0+1)*+1]Jo—(2¢+1)v} L)
(1+1)(20+3)w—(2¢+1)v
22+ u{[2(+ 1)+ Lo— 2i+ L)v}
o

i+ {26+ 12+ 1Jo— 2+ v}

b=

F=

Gi=

and similar expressions for 8 and .t

Now let P, Q, R, S, T, U be the six stresses, across three planes mutually at right
angles at the point x, ¥, z, estimated as is usual in works on the theory of elasticity.

Let P, Q, R be tractions and not pressures, and let p be the hydrostatic pressure at
the point 2, ¥, 2

Then P+Q+R being an invariant of the stress quadric, we have,

_1(P+Q+R)
+ —|— , 8o that & is the dllatatlon, then according to the usual formulas,}

* The phraseology adopted by TrHoMsoN and Tarr (first edition) and others seems a little unfortunate.
One might be inclined to suppose that compressibility and rigidity were things of the same nature; but
rigidity and the reciprocal of compressibility are of the same kind. If one may give exact meanings to old
words of somewhat general meanings, then one may pair together compressibility and “ pliancy,” and call
the moduli for the two sorts of elasticity the “incompressibility” and rigidity.

+ TrouMsoN and Tarr’s ¢ Nat. Phil., § 834, (8) and (9); or Phil. Trans., 1863, p. 573.

+ TromsoN and Tarr’s ¢ Nat. Phil,” § 693,
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P=(0—v)8420%

da  dy
- v< dz +dm)

and the other four stresses are expressed from these by cyclic changes of P, Q, R;
S,T,U; &, B,v; v, 2

The first task is to find p.
- Now by adding P, Q, R together we have,

p=—(w—3%v)d
We must now find 3 from (1)
_‘ By differentiation
—=(Ea*—F; 72) 2F o —Ga 21+3 ( W =21y — (244 3)Gﬂa9/i+1xc%( War=2=1) '

and similar expressions for dB/dy, dry/dz.

Now W, Wa=2%=1 are spherical harmonics of degrees ¢, —¢—1, and are also homo-
geneous functions of the same degrees. If therefore we add the three expressions
together, and note the properties of harmonics and of homogeneous functions, we have

==l W+ (2043)(¢41) G W,
Omitting for brevity that part of the divisors in the expressions for /' and G which
is common to both,
—2iFi+(2043)(+ 1)G=—1i(i+ 1)(21+3)w+z(2z+ 1)+ (2048) (G +1)iw
= Y241

and we have, on introducing the omitted denominator,

8=[2(¢+1)2+ 1o —(2i+ 1)vW’

And

R —i(w —3v)
PGP +1lo— @i+ 1)

Throughout the rest of this paper (excepting in § 10) the elastic sphere will be
treated as incompressible, so that o is to be considered as infinitely large compared

with v.
Henceforth I write ' »
I=2(i+1*+1 . . . . . . . ... (2)

and when  is infinite compared with v, we have,
o
p:—jWi....,..‘.a..(S)
~Also we may put
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. do
P=—p+ 2v~
fda  dy
T_v<dz+d7>
And on putting o infinite in (1) we have

ATy GHDEiH) Wi i ggd e
“—Iu[{z(i—l.)“ 22i +1) 7}dx —9’L-1-1 fza(W7 )

and symmetrical expressions for 8 and y.

(5)

The hydrostatic pressure might have been found from this general solution for the
case of incompressibility, but in order to do so it would have been necessary to go back
to the equations of equilibrium of the solid, and I prefer to deduce it from Sir WrLLiamM
TroMsoN’s solution in the more general case.

Since
7S —%=1l) = ; oA Wi
_.w(W7' 1) = — (214 D) W, 47 e
and since

(i 1)(2i-+8) 2= (2i+1)(i+3)

we may write « as follows :(—

1,(7,+2) w; .
?JvH e (i} T +2ch¢] L (6)
In order to find the stresses P, Q, &c., we must now evaluate [f: Z:: 2 &e.
Differentiating (6) with regard to ,—
da_ [i(i+2) oo\ o0 o\ @Wi_ g dWi .
QIchx—{ P (t43)r }—dxg-—Gx o +22W,. . . . . (7)

Differentiating with regard to z,—
i(i+2), a2W; aw; aw;
2Ty = { D s (i 3)r }dxd +2{ i (4 3)e 7} L ®)
and by symmetry
dy +2
2lvs = {z(“_l) 2 (i4-3)r° } s +2{ w—(z+3) ~—} Ce s (9)
Adding (8) and (9) together and dividing by 2, we have

Gy O\ U4 D) 0 SWi_ g f AW, W,
Iv(‘lz-l_dv’”) {’i— —(i+3)r }dﬁl‘d?’ 3{06 dz +zdw} <. (10)

Hence from (8) (4) (7) and (10) we have,
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IP_{ .“"1“) (L+3),~9}d’W ‘ZW+.)1,W Wl

1(1,+.4) Wi aw; reoeoes (14
IT_{ —(i+38) } -—3(90 o m)J

where /=2 (l+1)2+1

The expressions for Q, R, S, U may be wntten down from these by means of cyclic
changes of the symbols.

These are the required expressions for the stresses at any point in the interior of
the sphere.

In order to find the magnitude and direction of the principal stress-axes at any
point it would be necessary to solve a cubic equation. The solution of this equation
appears to be difficult, but the special case in which it reduces to a quadratic equation
will fortunately give adequate results. It may be seen from considerations of symmetry
that if W, be a zonal harmonic, two of the principal stress-axes lie in a meridional
plane and the third is perpendicular thereto. Moreover the greatest and least stress-
axes are those which lie in that plane, and the mean stress-axis is that which is
perpendicular thereto. If this is not obvious to the reader at present, it will become
so later.

I shall therefore take W; to be a zonal harmonic, and as the future developments
will be by means of series (which though finite will be long for the higher orders of
harmonics) I shall attend more especially to the equatorial regions of the sphere.

§ 2. The determination of the stresses when the disturbing potential is an
even zonal harmonic.

If 0 be colatitude the expression for a zonal surface harmonic or LEGENDRE’S
function of order ¢ is

cosi~*fsintf— . .

A=) e  i=1)—2)(i—3
cos’ 0_143(1 1)g cos* O sint 01 | )cg(z !)2)(% )

or if we begin by the other end of the series, and take ¢ as an even number, the
expression is

(—)%",)i {il!%.'} [sm 0—— s1n"2 0 cos? 0+~(—
-Ik '2" .

9 0
a0 27 sin“* @ cos*f— . . . ]

This latter is the appropriate form when we wish to consider especially the equatorial
regions, because cos @ is small for that part of the sphere.

There is of course a similar formula when ¢ is odd, but of this I shall make no use.

Now let p*=1*+2?% so that sin 0=p/r, cos 0=z/r.
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Then we may put

W—-p v t._o 0+7’ (@—2> z—-sz{ E__(_@_:%M G (12)

W; is a solid zonal harmonic of degree ¢; but »~W; requires mulmphcatwn by a
factor (—)¥!/2/{3¢13? in order to make it a LEGENDRE’'S function.

The factors by which W; must be deemed to be multiplied in order that it may be
a potential, will be dropped for the present, to be inserted later. Or we may, if we
like, suppose that the units of length or of time are so chosen as to make the factor
equal to unity.

Now let

P(i—2P(—4)

=1, B=r, B="n L, g =TT e L (19)

Then, dropping the suffix to W for brevity, we may write

W=RBp'—Bop"™ 2"+ B,p" 2" — Bﬁpi_ﬁz6+ R ¢ 1Y)

I shall now find P, Q, R, T at any point in the meridional plane which is determined
by y=0.

In evaluating the first differential coefficients of W we must not put y=0, in as far
as these coeflicients are a first step towards the determination of the second differential
coefficients. But in as far as these first coeflicients are directly involved in the
expressions for P, Q, R, and T, and in the second coeflicients in the same expressions,
we may put y=0, and thus write 2 in place of p.

dp dp
Pay=" Py =Y (",T—O since p?=ax*-+ 1~
Then

d o

=a[iByp =2 — (i—2)Bop P+ (i— 4)Byp % — . . ]
El_”f_ |
a =y|same series ]
aw ; ; R .
e =z[ —2B,p P+ 4B,p 1 —6Bp 0 .. J

In differentiating a second time we may treat p as identical with @, because y is to
be put equal to zero. Thus

a>cw

T i(i= B (1= 2)i—B)Ba e (i )i 5) B~

2w - : 6.

dy? =i — (i—2)B P 4 (1= 4) B~ — . ro (19)
2
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>wW

o = — 2(@—2)Bzm"4+4(z—4),8 X622 —6(1—6) B St . .
$EW_ FPW_

doedy™ 7 dydz

Also treating p as identical with «, and putting y=0,

mc%l/_V___ 7 130905_ (@ — 2) Bzwi—zzz + (,,;_ 4) ,8490{"%‘* —
aw '
Yay = =0 .
zM= — 2B, %P 4B — 6 B S L J
aw . aw . . . "
(-2 e | (8, 28— [ (2= 48,1
aw | aw\ aw | AW = 4)8— 08—
gl ()=

193

(16)

(-

C. . (1)

! L . (18)

These various results have now to be introduced into the expressions (11) for

P,QR,ST,TU.

In performing these operations it will be convenient to write J for z(z+2) /(z—1).

Also r*=p*+2*=a"+7", when y=0.

From these formulas we see that S=0, U=0; which shows that a meridional
plane is one of the three principal planes, a result already observed from principles of

symmetry.

Now
r 2“—" @(@ 1) B +[e(t—1)By— (1—2)(1—8)By ] %

—[(z—2 )(i—38)B,— (1—4)(1=5)B, 4+ .
1 =i+ [iBy— (1= 2) Bl (1= 2) o= (= B

2

aw ., . ‘2 it (7 i-2,8 (] il h
_293_&—5+@W= — B4 (1 —4)Byr = — (1 —8) B ™+ . ..

— gyM+ W= i,BOaci — 1By 2R 1B —

— (1—4) By’ + (1—8) B~ —
2c

MDCCCLXXXIT,

(19)

Y

L. (20)
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P = 2(i— 2B [2(i— 2) o Lli— OB, J

H[4(t—4)B,—6(1—6)BgJe%— . ..} . . (21)

Then multiplying (19) by —(i+3), (20) by 8, and (15) by Ja? and adding them
each to each, we get the expressions for P, Q, R

Also multiplying (21) by —(+3), (18) by —3, and (16) by Ja? and adding, we get
the expression for T. The results are

P= —f(%+3) i(1—1)437]8 |
+[{(G+3)(—2)(i—8)+3(1—4)} By—(1+8)i(i—1)B, =%
—[{(i43)(i—4)(i—5)+3(i—8) } By— (143) (i —2) (i — 8)B, | w2+
+[{i43)(1—6)(i—7)+3(—12)}By— (i+8) (1 — 4) (i —5) B, ] 020 —
+Tai(i— 1) By — (i—2) (i—8) B2+ (i— 4) i—5) B~ — . . ]

IR=[(i43).1.2B,+8iB, Jx'—[ (¢ +3).8.48,— { (1+3).1.2 —3(1—4) } B, Jx"*®
+[(i48).5.68,— { (143).3.4—3(:—8) } B, ]~z
—[(14+38).7.88;— { (1+48).5.6 —8(t—12)Bg J"~ %5+ . . .

—Ja1.2B,x 2 —3.4B,x 2+ 5.6 B0 — . . .]

IQ=—[(143)i—3i )B4 {(i43)(1 —2) —3i} By— (¢ +8) 1B, J&'~%>
—[{(t+3)(t—4) =38} B,— (i+3)(tr—2)By o™
+H[{G+8)(—6)—3i} B — (i+8) (i —4)B,Jw %" —
+Jalini — (1—2) Bt R - (i—4) B0 — . . ]

S =[{+8)2(i—2)+3.2} 8, i8>
—[{(i43)4(i—4)+3.4}B,— {(i+3)2(:—2) +3(1—2) } B, ] **
H{(E+3)6(:—6)+3.6}8;,— {(i+3)4(i—4) +3(:—4)} B, ]~ =
—[1(+2)8(=8)+.8)B,— {(+3)0(—0)+3(— I8 ] 4.
—Ja[2(i—2)Bxt — 4(t—4) B8P+ 6(1—6) B8t — . . ]

The general law of formation of the successive coefficients is obvious, and it is easy
to write down the general term in each of the eight series involved in these four
expressions ; the best way indeed of obtaining the formulas given below is to write
down and transform the general term.

The semi-polar coordinates used hitherto are not so convenient as true polar
coordinates; I therefore substitute », radius vector, and I, latitude, for the z, 2
system, and putting =1 cos /, z=v sin [ write
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P=ricosil(dy+ A, tan U+ A4, tan I+ . . ) h

+ a2 cos (B, + B, tan %+ B, tan 4‘l+ )
R=#cos I(Cy+C, tan ¥+ C, tan I+ . . .)

+a*#? cos YDy +D, tan 14D, tan 4 . . .) | (22)
T =7 sin | cos "N(Ey+ E, tan %1+ E, tan 1+ . . .) .

+ a2~ sin 1 cos “3(Fy+ F, tan 2+ F, tan 4+ .. )
Q=r' cos UG+ G, tan U+G, tan 1+ . . )

+a*r*2 cos U (Hy+ Hy tan 1+ H tan I4 . .\) |

Then introducing for J and for the Bs their values in terms of ¢, I find that the
coefficients 4, B, &c., are reducible to the forms given in the following equations :—

Tdy= = {i(i42)(i—0)—8.0.(i+1)} +0.(+8)i+2)(i+ 1) = —2(-+2)
Tdy= 1 {i(i—0)(i—2) —8.2(i— 1)} — 2 i+ 3)(i-+0)(i—1)

T4,= =2 i 9) i 4) — 84— 8)} 2 (14 3)5—2) (i—3)

14, =22 s )i 6)— 36— 5)} = "2 i 48) 1= 1) i—5)

&e.=&ec. | r (23)
z(z+2 1

18,="22 i)

1B,=="22 T(i_9)i—3)

1(1+2) *(1—2)? .
IB‘F‘— (7/+1)Z(4! )(7’ )(?’_5)

&e.=&ec.
IC, =5 {(i+3)—[i(1(=2)—1)48.0..} =d(i+1)(i+2) +1]

ICy=—1 (i+8)(—2)'—[i(3.0—1)+3.2.5]}

7,('1, 2)

10, =" {(i+3)(i—4)*—[(5.2—1)+8.4.5]}

.106=—””“‘2)2(? 9 {(i+3)(i— 6y —[i(7.4—1)+3.67]}
&e.=é&c. ; ‘ , r (29)
_i(i+2)
IDO—_‘¢—1 0!

W(i+2) P(E—2)*

i—1 21

i(i42) P(i—2)3(i—4)?
1—1 4!

1p,=4*2

I.D4'= -
&c.=&ec.

2¢c2
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TBy=—1(3i48)—i(i—0)(i+ 1) T=ili-+1)(

IB,=" (i—2)[3(5i43)—i(i—2)(i—1)]

P?(r—2)?

=2 (1 )57k 8)—i(i—4)(i— )]

1E,=—

3) |

IEGJ(% —2 (@ =D 6)[7(9i+8)—i(i—6)(i—5)]

&eo.= &e.

Thy= "—%3(;1 14)

1= (226D

1= =8 (== 8=0)
IF6=%'SS?'2_‘14) (i—=2)(i— );(!z 6)2(i~8)
&e.= ke,

Gy == {i(i—0)— 3.0} +0.(i+8) (i+2) = —#*

16, =0 {i(i—2)—3.2} — - (i+3)i

IG¢=—4“(?’4 fili—4)— 8.4} 42 (143)(i—2)
&e.=&e.
(i+2) 1.
IHO.._M < of
TH,=— %(%_-_Fl{)) : (1—2)
IH,= ij)”@ “2E (i)
&e.=&e.

)

-

These sets of coefficients are all written down in such a form that the laws of their
formation are obvious, and the general terms may easily be found. I have computed
their values from these formulas for the even zonal harmonics of orders 2, 4, 6, 8, 10,
12 ; the results are given in the following tables both in the form of fractions and of
decimals approximately equal to those fractions.

The G’s and H’s were not computed because their values were not required for
stibsequent operations.
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7 A, 4, 4, 4, B, B, B, By
—16 —22 16
2 19 19 19
—-8421 | —1-1579 +-8421
Lon | m # TR
—1:8824| +-5490 +2-8235 +1-8824| —2:5098
| - | 418 we | o—we | bp | —ug | 4w
—2:9091| 4180000 | +16:7273 | —4-9455 | 429091 | —20'9455 +4 654:5
| - | bams | e | cange | bus | v | e | —un
—39264 | 4633620 | —129571 | —74:6012 | +3'9264 | —67-3094 | 4807713 —71797
o] e | b | s | s | bep | —oaee | rappe | —ngge
—4-9383 | +148'6831 | —284-7737 | —230:4527 | +4-9383 | —153-6352 | +488'9561 | —210'6996
| —HE | bame | —awge | s | b | amme | buwpges | —ugpe
—59469 | 42859823 | —1221-2389 | +212:3894 | + 59469 | —291-9389 | +1513-7570 | —1780-0080
TasLE IL.—The coeflicients for expressing the stress R.
i | o 0, 0, 0, D, 7, D, D,
,| i | B —3
+1:3684| +1:6842 —1-6842
D e —e | e
+2:4314 | -2'1961 —5:0196 —2:5098| 450196
N T s we | —we | b | —wp
+3:4545 | —24-0000 | —189091 +9:3091 | —34909| 4+27-9278 | —9-3091
| rEE | e | e | boee | ot | e | —lup | b
+ 44663 | —75'7791 | +259141 | +93:6049 | —4-4873 | +80'7713 | —107'6950 | +14:3593
o | e | e | smge | range | e | e | —agges | pasgpe
+5:4733 | —169°5473 | +348'9712 | +247-5720 | —5'4870 | +1755830| —526:7490 | 4-280-9328
Lo | T | —ate | +iyge o i B o
+6'4779 | —817:3097 | +1401-7700 | —339:8230 | —6-4875 | +324-3765 | —1730 0080 +2076-0097
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TasLe III.—The coefficients for expressing the stress T.

i B, B, B, B, F, 7, F, 7,
o | T
+°3158
L TR |+ —sg
+50980 | 447059 — 50196
o t14 | -1 | - —rgp | +agge
+14:0000| —5'0909 | —18-3273 —13-9636 | +18'6182
I e e e e e o et L
+26'9448 | —81:2761 | —63-6074 | +42:8088 |—26'9238 | +107:6950 | —43:0780
jo | TR | —IEge | bajsge | bappage | —apgge) dasggee | —igige | fagggge
+43:9095 | —307-8189 | +724280 | +339:3769 | —43-8958 | +351'1660 | —421'3992 | 4 80-2664
12 + 7181832 —2 (]?% g 0 + 1 3171238 [) + 9 g § g 1] — 8102644;30 + 1 017254230 o] —_—2 51820*438 [0) + 1 417244,-536 Q
+64-8850 | —800-7089 | +1214:8673 | + 8835398 | —64-8753 | +865:0040 | —2076-0097 | +1186-2912

If W be a 2nd, 4th, or 6th harmonic these tables give the complete expressions for
P,R,and T; if W be an 8th harmonic the only further coefficients required are A
and C;. _

For the cases of the 10th and 12th harmonics the values in the tables are sufficient
to give the stresses approximately over a wide equatorial belt, because the series for
P, R, T proceed by powers of the tangent of the latitude, and the omitted terms
involve high powers of that tangent. It would hardly be safe however to apply the
formula—at least as regards the 12th harmonic—for latitudes greater than 15°,
because the coefficients are large.

§ 8. On the direction and magnitude of the principal stresses tn a strained elastic solid.

Let P, Q, R, S, T, U specify the stresses in a homogeneously stressed and strained
elastic solid. Let /, m, n be the direction cosines of a principal stress axis.
The consideration, that at the extremity of a principal axis the normal to the stress
quadric is coincident with the radius vector, gives the equations
(P—=NI+Um+Tn=0
Ul4+(Q—N)m~+Sn=0
TI+Sm+(R—N)n=0
These equations lead to the discriminating cubic for the determination of \, and the
solution for 7, m, » is then
e m? _ w
(Q@—=MNR—A) =" (P=N)R—A) =T (P—=1)(Q—r)-T?
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In the case considered in the preceding sections S and U vanish, and the cubic

reduces to the quadratic
' (P—=N(R—N—T?=0

ON=P+R++/(P—Rp+ 4T

~ m is obviously zero and [, n are determinable from

P(P—N)=n%R—)\)

of which the solution is

Let
l=cos9, n=sind
Then it is easily proved that
P—R

cob2I="go ... (2])

This equation gives the directions of the principal stress-axes.
The two principal stresses N;, Ny are the two values of A, so that

N1=%(P+R)+%\/(P—-R)2+4T2}

(28)
N,=}(P+R)—}/(P—RJ+iT*

and the third principal stress, which we suppose intermediate in value between N;
and N, is of course Q. |

When an elastic solid is in a state of stress it is supposed, in all probability with
justice, that the tendency of the solid to rupture at any point is to be estimated by
the form of the stress quadric. At any rate the hypothesis is here adopted that the
tendency to break is to be estimated by the difference between the greatest and least
principal stresses. For the sake of brevity I shall refer to the difference between the
greatest and least principal stresses as ‘“the stress-difference.” This quantity I shall
find it convenient to indicate by A.

We may also look at the subject from another point of view:—It is a well-known
theorem in the theory of elastic solids that the greatest shearing stress at any point is
equal to a half of the stress-difference. It is difficult to conceive any mode in which
an elastic solid can rupture except by shearing, and hence it appears that the greatest
shearing stress is a proper measure of the tendency to break. This measure of ten-
dency to break is exactly one-half of the stress-difference, and it is therefore a matter
of indifference whether we take greatest shearing stress or stress-difference. For the
sake of comparison with experimental results as to the stresses under which wires and
rods of various materials will break and crush, I have found it more convenient to use
stress-difference throughout; but the results may all be reduced to shearing stresses
by merely halving the numbers given. |

From (28) we have then

Aa=vP=RPF4T® . . . . . . . . . (29)

and the greatest shearing stress at the same point is 3 A.
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§ 4. The application of previous analysis to the determination of the stresses
produced by the weight of superficial inequalities.

I have in a previous paper shown how Sir WiLLiam TmoMsoN’s solution for the
state of internal strain of an elastic sphere subject to bodily forces, but not acted on
by any surface forces, is to be adapted to the case of a spheroid (whose small
inequalities are expressed as surface harmonics) of homogeneous elastic matter, endued
with the power of mutual gravitation.* TroMsoN’s solution is of course directly
applicable for finding the state of strain due to a true external force, such as the tide-
generating influence of the moon, but this forms only a part of the complete solution
when the sphere has the power of gravitation. He introduced the effects of gravita-
tion synthetically, but for my own purposes I prefer the analytical method pursued in
my paper above referred to.

Suppose that r=a-o; be the equation to an harmonic spheroid of the ¢ order,
forming inequalities on the surface of the sphere, whose density is w.

Then the causes producing a state of stress and strain in the mean sphere of radius
a are, first a normal traction per unit area of the surface of the sphere equal to —gwo,
when ¢ is the value of gravity, and secondly the attraction of the inequalities o, acting
throughout the whole sphere.

The first of these causes (viz.: the weight of the mountains or continents) is shown
in my paper to produce the same state of strain as would be produced in the sphere,
‘now free from surface action, by bodily forces correspondmg with a potential
—guw(r/a)o;

As regards the second of these causes (viz.: the attraction of the mountains or
continents), the potential of the layer of matter o; on any internal point, estimated per
unit volume, is 8gw(r/a)io;/(2i+41).t

Then adding these two potentials together, we see that the surface inequalities o;
produce the same state of strain as would be caused by the bodily forces due to a
potential —2(¢—1)guw(r/a)'o;/(2041), and the surface of the sphere is now subjected to
no forces.

This expression is a solid harmonic of the i degree, and therefore the analytical

% ¢ On the Bodily Tides of Viscous and Semi-elastic Spheroids, &ec.,” Phil. Trans., Part I., 1879, p. 1
(see § 2). This paper treats of the state of flow of a viscous sphere, but the problem is exactly the same
as that concerning elasticity here considered. It is easy to see that if a viscous sphere be deformed into
the shape of a zonal harmonic, the flow of the fluid must be meridional, and from this we may conclude
that in the elastic sphere the plane of greatest and least principal stresses is also meridional. This has
been already assumed to be the case in the present paper.

+ If we could suppose a sphere to have homogeneous elasticity but heterogeneous density, this manner
of building up the effective disturbing potential would have to be somewhat modified. Such an hypo-
thesis is somewhat absurd, and I shall regard the sphere as homogeneous. In application to the case of
the earth I shall however pay attention to the smaller density of the quperﬁclal layers by halving the
height of the actual continents and the depth of the actual seas.
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results of the preceding sections are directly available for finding the state of stress
due to continents and mountain chains.

We must in fact put
9(i—1)
Wi=—% 9w< >

Now in the previous developments the factors involving ¢, w, &e., have been
omitted and W; has been put equal to a zonal harmonic which had the value unity at
the equator.

If we write

2
s;=sini0-—%sin5‘20c0s90+&c. B € 10)]

where 6 is the colatitude, and put A as the height above the mean sphere of the
elevation at the equator, then /s;=o; and

2(i—1) gwk

W=—52 500 . L (1)

W; was in (12) put equal to 7%s; ~

Thus in order to apply the preceding results to finding the stresses caused in a
sphere, possessing the power of gravitation, by the weight and attraction of surface
inequalities expressed by

r=a+ths; . . . . . . . . . .. (32
we must multiply the preceding results for P, R, T, Q by

20—1) guwh
S L (3

§ 5. The state of stress due to ellipticity of figure or to tide-generating forces.

When the effective disturbing potential W; is a solid harmonic of the second degree
the solution found above will give the stresses caused by oblateness or prolateness of
the spheroid. It will of course also serve for the case of a rotating spheroid with
more or less oblateness than is appropriate for the equilibrium figure.

When an elastic sphere is under the action of tide-generating forces the disturbing
potential is a solid harmonic of the second degree, and therefore the present solution
will apply to this case also.

The formula for the stress-difference admits of reduction to a simple form when
1=2.

On substituting colatitude @ for latitude I, (22) gives

P—R=12"sin *g[(4d,— C\)+(d4,— Cy) cot *0]+a¥(B,— D)
T=7sin 6 cos 0(E )
MDCCCLXXXIL 2D
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Then substituting for 4, B, C, D, E their values from Tables I., II., ITL, and
making some simple reductions, we find

P—R=+[8(«*—1%)—r? cos 20
=19 —reos 0] "
2T =+551" sin 26
Therefore by (29) in the present case, the stress-difference
A= /64— =16 (@ —") cos20 . . . . . . (3h)

In order to find the actual value of A in any special case we shall have to multiply
(35) by appropriate factors ; the factors will be determined below. For the present it
will be more convenient to omit the factor %, and to reintroduce it along with these
other factors.

The formula (35) enables us to determine the distribution of stress-ditference
throughout the sphere in the cases to which this section applies.

The curves of equal stress-difference are given by the equation

64(a*—1?) +1t'—161%a?—1?) cos 20=a constant

The stress-difference at any point on any equatorial radius (for which 0=4w) is
clearly given by 8a®—7r? and along the polar radius (for which 6=0) by 8a*— 9,

From this result it is clear that the stress-difference vanishes at that point on the
polar radius for which r=2a+/2="9425q; this is the only point within the whole
spheroid for which it vanishes.

‘When r=a the stress-difference is equal to a? from which we obtain the remark-
able result that the stress-difference is constant all over the surface. When =0,
it is equal-to 8a? which is eight times the surface value.

By means of arithmetical calculation and graphical interpolation I have drawn
fig. 1; it shows the curves of equal stress-difference throughout a meridional section
of the spheroid. The numbers written on the curves represent the values of stress-
difference when the radius of the sphere is unity and when the factors above referred
to are omitted (see Plate 19, fig. 1). '

The point marked 0 is that in which the stress-difference vanishes. Round this
point are drawn two dotted curves along which the stress-differences are § and #
respectively. The remainder of the curves are drawn for equidistant values of stress-
difference, and are marked 1, 2, 3...8. The curve marked 1 is singular, for the
whole of the surface forms one branch of it, whilst there is another branch which runs
below the surface from the polar axis and then rises to the surface at the point where
cos 20=—1, that is to say, in lat. 41° 25’. Near the centre the curves are approxi-
mately circular, and they become somewhat like ellipses as we recede from the
centre.
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If this figure be made to rotate about the polar axis, the several curves will of
course generate the surfaces of equal stress-difference throughout the sphere.

Writing 9 for the inclination of one of the principal axes to the equator, we have
by means of the formula (27)

cot 29="— R=8{<g>2—1} cosec 20— cot 20
2T 7
It would be easy to trace out the changes of direction of the principal stress-axes
throughout the sphere, but I will only now make the observation that all over the
surface they are parallel to and perpendicular to the surface, and that at the centre they
are polar and equatorial, the stress-quadric being of course an ellipsoid of revolution.
We have next to find the actual amount of stress-difference which arises from
given ellipticity of form of the spheroid. Putting =2 in (30) we have ‘

s;= sin? —2 cos® 0=3[1— cos? f]
The equation to the spheroid is
r=a-+hs; '
=a[1 + 311(%; — cos? 0)]:&[1 +e(3— cos? 6) ]

Thus 8h/a is the ellipticity of the spheroid, which we may put equal to e.

Then it was shown in (33) §4 that the results for the stresses P, Q, R, &c., are to
be multiplied by —2gwh/a? and this will of course be also the factor for the stress-
difference A. o

Then substituting e for 8k/a, and introducing the factor 1%, which has been omitted
in considering the distribution of stress within the spheroid, we see that ellipticity e
gives a stress-difference represented by '

A= ——gggwa /\/64(].-(2—;)2>2+<2—;>4— 16(2—)2(1 —<2>2> cos 26
If we estimate the forces in gravitation units the factor g must be omitted.

The expression under the square-root sign is equal to unity at the surface, and to
8 at the centre. ‘

Thus the stress-differences, in gravitation units of force, at the surface and at the
centre are gxewa and §¥ewa respectively.

To apply this to the case of the earth, take a=637 X 10¢ c.m., and w="5"66, and we
find the surface and central stress-differences to be respectively 152¢ and 1214e¢ metric
tonnes per square centimeter. '

If these numbers be multiplied by 634, we get the same result expressed in tons
per square inch. Thus in British units these two stress-differences are 926e and
7698e. ‘

2 D2
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If then the ellipticity e be ti&pth, the surface and central stress- dlﬁ"erences will be
nearly 1 ton and nearly 8 tons to the square inch respectively.

From the Table VIL in § 9 it will appear that cast brass ruptures with a stress-
difference of about 8 tons to the square inch.

Thus a spheroid, made of material as strong as brass, and of the same dimensions
and density as the earth, would only jus’c support an excess or deﬁcieno) of ellipticity

The followu\g is a second example: ~—If the homogeneous earth (with elhp’umty 5537)
were to stop rotating, the qtress difference at the centre would be 33 tons per square
inch.

Now suppose the cause of internal stress to be the moon’s tide-generating influence,
and let m= moon’s mass, and ¢= moon’s distance.

Then the potential under which the earth is stressed is —3§(m/c%)(§— cos® )wr?, or
according to the notation of § 4 —i(m/c®)wr’s,.

If we took into account the elastic ylelding of the earth and the weight and
attraction of the tidal protuberance, this potential would have to be diminished. To
estimate the diminution we must of course know the amount of elastic yielding, but
as there is no means of approximating thereto, it will be left out of account.

Then it is obvious that the factor by which A, as given in (35), must be multiplied
in order to give the stress-difference is dmw/c®. Thus the surface stress-difference is
P53(m/c3)wa® in absolute force units.

Then putting M for the earth’s mass, and dividing by gravity, we have
B5(ma’/Mc*)wa as the surface value of A in gravitation units. The central value of
A is of course eight times as great.

With the numerical data used above, wa=23605 metric tonnes per square c.m., and
m/ M=+, a/c=+4'%, whence the surface stress-difference is 32 grdmmes and the central
stress-difference 257 grammes per square centimeter.
~ But this conclusion is erroneous for the following reason. If we suppose the moon
to revolve in the terrestrial equator, and imagine that the meridian from which longi-
tudes are measured is the meridian in which the moon stands at the instant under
consideration, theun the tide-generating potential is —%&(m/c3)rf§— sin® 6 cos® ¢]; this
expression may be written $(m/c®)r*(z— cos® ) 4-3(m/c®)r? sin f cos 2¢.  The former
of these terms produces a permanent increase of the earth’s ellipticity, and is confused
and lost in the ellipticity due to terrestrial rotation, and can produce no stress in the
earth. The second term is the true tide-generating potential, but it is a sectorial
harmonic, and I have failed to treat such cases. Now the first of these terms causes
ellipticity in a homogeneous earth equal to (§a/g)($m/c®) according to the equilibrium
tide-theory. This ellipticity is equal to "1039X 1075, an excessively small quantity.
If however this permanent ellipticity does not exist (and the above investigation in
reality presumes it not to exist), then there will be a superficial stress-difference equal
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to 152X 1039X 107 metric tonnes per square centimeter, and a central stress-
difference of eight times as much.

Since a metric tonne is a million grammes this surface stress-difference is 16 grammes,
and the central 128 grammes per square centimeter. These stress-differences are
exactly the halves of those which have been computed above. Thus the remaining
stress-difference which is due to the moon’s tide-generating influence is 16 grammes
at the surface and 128 grammes at the centre per square centimeter.

A flaw in this reasoning is that stress-difference is a non-linear function of the
stresses, and therefore the stress-difference arising from the sum of two sets of bodily
stresses is not the sum of their separate stress-differences.

I conceive however that the above conclusion is not likely to be much wrong.

These stresses are very small compared with those arising from the weights of
mountains and continents as computed below, nevertheless they are so considerable
that we can understand the enormous rigidity which Sir Wirriam TaoMsoN has
shown that the earth must possess in order to resist considerable tidal deformations
of 1ts mass.

§6. On the stresses due to « series of parallel mountain chains.

Having considered the case of the second harmonic, I now pass to the other extreme
and suppose the order of harmonics « to be infinitely great, whilst the radius of the
sphere is also infinitely great.

The equatorial belt now becomes infinitely wide, and the surface inequalities consist
of a number of parallel simple harmonic mountains and valleys.

If ¢ be infinitely large, we have from (12)

vims e -]

Now let & be the depth below the surface of the point indicated in the sphere (now
infinitely large) by o, v, 2.

As the formulas given above apply to the meridional plane for which y=0, we
have p=a—¢&.

Now let b=a/r, then when both ¢ and @ are infinite

i i 1— 8\ = et
P =qQ < " =da’€
and since in the limit p/i=a/i=D,

=t ] — T L
W,=d’e (1 9!bg+4!b4 >
= (a’)e™*" cos%

This expression for W involves the infinite factor ¢/, and in order to get rid of it we
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must now consider the factor by which it is to be multiplied, in introducing the height
of the mountains and gravity.

This factor is computed in §4; it is there shown that if »=a-hs; be a harmonic
spheroid, the factor is —2(1—1)gwh/(2¢+ 1)’

Now if the harmonic ¢ be of an infinitely high order, s; becomes simply cos z/b, and
the equation to the surface is

E=—h cos 7

¢ being measured downwards. Thus the harmonic spheroid hs; now represents a
series of parallel harmonic mountains and valleys of height and depth A, and wave-
length 2mb.

The factor becomes —gwh/a, when 1 is infinite.

Thus the effective disturbing potential W, which is competent to produce the same
state of stress and strain as the weight of the mountains and valleys, is given by

W=—guwhe®cos> . . . . . . . . . (36

- Now revert to the expressions (11) for the stresses.
When ¢ is infinite 7=2¢* and they become, on changing 2 into (a—¢)

1o
P_%w —17?)

AW 6a—§E) dW
dfz+ 2%  dE +27W

aw 3 AW AW
— ) 2l L
T==3 St e 2¢2<(“ £ zdg)
Now as shown above a?—r*=2a¢§, and a/t=> in the 1imit; making these substitu-

tions, and dropping the terms which become infinitely small when ¢ is infinite, we
have

_ ™V p_ g @)
P=E g, T= fbd’g‘dzL

EW '
R=877,Q=0 |

Then from (86) and (37) we have
P= —qwhf ~ cos

and by a similar process

(37)

13

e

E_,, P
R= guwh;e™" cos; (38)

b

— ’ §—§/b s F
T= gwhbe sin b

A=, (P=R)'+4T

Since the stress-difference

we have
A=2gwh§e"5/". R 1))
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The directions of the stress-axes are given by

B i

cot 23— 5T

= cot

e

so that

3_15...........(40)

Equation (39) gives the stress-difference at a depth & below the mean surface, and
is very remarkable as showing that the stress-difference depends on depth below the
mean horizontal surface and not at all on the position of the point considered with
reference to the ridges and furrows.

Equation (40) shows that if we travel along uniformly horizontally through the
solid perpendicular to the ridges, the stress-axes revolve with a uniform angular
velocity. '

They are vertical and horizontal when we are under a ridge, and they have turned
through a right angle and are again vertical and horizontal by the time we have
arrived under a furrow.

Since the function xe= is a maximum when x=1, the stress-difference A is a
maximum when §=b,—that is to say, at a depth equal to 1/27 of the wave-length—
and is then equal to 2gwhe™ or in gravitation units of force to *736 wh. It is inte-
resting to notice that the value of this maximum depends only on the height and
density of the mountains, and does not involve the distance from crest to crest. The
depth at which this maximum is reached depends of course on the wave-length.

Plate 19, fig. 2, shows the distribution of stress-difference, the vertical ordinates
represent stress-difference, and the horizontal ones depth below the surface. The
numbers written on the horizontal axis are multiples of b; the distance OL on this
scale is equal to 6'28, and is therefore equal to the wave-length from crest to crest,
and the distance OH is the semi-wave-length from crest to furrow.

In the case of terrestrial mountains w is about 2°8, and if we suppose % to be 2000
meters, or a little over 6000 feet, we have the case of a series of lofty mountain chains
—for it must be remembered that the valleys run down to 2000 meters below the
mean surface, so that the mountains are some 13,000 feet above the valley- bottoms

Then A=2X10%, w=2°8, and the maximum stress-difference is

736X 28X 2X 10°="412 X 10° grammes per square centimeter,
gr per sq

This stress-difference is, in British measure, 2'6 tons per square inch.

If we suppose (as is not unreasonable) that it is 314 miles from crest {o crest of the
mountains, then the maximum stress will be reached at 50 miles below the surface.

From Table VIL, § 9, it will be seen that if the materials of the earth at this depth
“of 50 miles had only as much tenacity as sheet lead, the mountain chains would sink
down, but they would just be supported if the tenacity were equal to that of cast tin.
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§ 7. On the stresses due to the even zonal harmonic inequalities.

Having considered the two extreme cases where ¢ is 2, and infinity, I pass now to
the intermediate ones. As the odd zonal harmonics were not required for the investi-
gation in the following section I have only worked out in detail the even ones.

The surface of the sphere is now corrugated by a series of undulations parallel to
the equator, and the altitude of the corrugations increases towards the poles. The
form of the undulation in the neighbourhood of the equator is exhibited in Plate 19,
fig. 3.

The stress-difference is as before given by

A=+/(P—R)*4-4T?

To form this expression the series in (22) for R must be subtracted from the series
for P. Since the C’s and D’s of Table II. have always the opposite signs from the 4’s
and B’s of Table I, this algebraic subtraction becomes a numerical addition of the

numbers in these two tables.
The results are given in the following table.

Tasre IV.—The coeflicients for expressing P—R.

i A—Cy | A,—C, | A,—0C, | A4—C, | B,—D, | B,—D, | B—D, | By—D,
2 | —22105 | —2:8421 +2:5263 |

4 | —4:3137 | 427451 | +78431 +4:3922 | —7-5294

6 | —63636 | +42 +356364 | —14-2545 | +6-4 —48-8727 | +18:9636

8 | —83926 |+130-1411| —3838712 | 1682061 | +84137 | —1480806 +188-4663 | —21-5390
10 | —104115 |+ 3182304 —6337440 | — 4780247 | +10-4252 |—320-2182 |+ 9657051 | —491-6324
12 | —12:425 | 4603292 |—2623009 +552212 | +12:434 | —616:815 |+3243:765 | —3806:018

Then we have

P=R=ricos’ [ (4y— C)+(4,—C,) tan® I+ . . ]
+a*? cos™? [ (B,— Dy)+(By,—D,) tan? I+ . . .|

The materials for computing T have been already given in Table ITL.

The series for P—R and for 2T should now be squared and added together, but the
result would be so complex that it is not worth while to proceed algebraically.

At the equator T=0, and A=P—R, and P—R reduces to only two terms,
whatever be the order of harmonic.

By reference to (28) and (24) we see that at the equator
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Lo [iG+2)©2i—1 . .
=2(¢:.1)2+1[( +fb'?£1% )ag—(l+1)(22+3)7'2]
or
__ W0+ 1) (204 8)arriA [r\? 3
A=TEr @i <a> +(¢2—1)<zq;+3)] S

This value for A requires of course multiplication by appropriate factors involving
the height of the continents and gravity. '

Even when ¢ is no larger than 6, (41) differs but little from "~*(@*—17?), at least for
values of » not very nearly equal to a.

A clearly reaches a maximum when

)=+ )

For large values of ¢ this maximum is nearly equal to 2{(i—2)/s}¥ &’
From these formulas the following results are easily obtained.

TasLe V. (a).

i= 2 4 ’ 6 8 ) 10 } 12
Maximum valueof A . . .| 2526 1-118 959 *894 ‘859 ‘836
Value of r/a when A is max. . 0 714 ‘819 ‘867 ‘895 913

Plate 20, fig. 4, shows graphically the law of diminution of stress-difference for
the even zonal harmonics, the vertical ordinates representing stress-difference and the
horizontal ones the distances from the surface or from the centre of the globe.

In order to find a numerical value of these maximum stress-differences which shall
be intelligible according to ordinary mechanical ideas, I will suppose the height of
each of the harmonics at the equator to be 1500 meters. On account of the small
density of the superficial layers in the earth, this is very nearly the same as supposing
that in the earth the maximum height of the continents above, and the maximum
depth of the depressions below the mean level of the earth are each about 3000 meters.
In the summary at the end I shall show that there is reason to believe that this is
about the magnitude of terrestrial inequalities.

Then by (83) we have to multiply the maximum stress-differences in the above
table by 2(¢—1)wh/(2/41), in order to obtain the stress-differences for the supposed
continents in grammes or tonnes per square centimeter.

Now+w=5'66 and h=1'5% 10 according to the above hypothesis as to height of
continent ; and the coefficient in ¢ is of course different for each harmonic.

By performing these multiplications I find the following results.

MDCCCLXXXITT, 2 E
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TasLe V. (b).—Maximum stress-differences due to harmonic continents and seas.

Order of harmonic. 2 4 6 8 10 12

Max. stress-difference, in metric tonnes per

8q. c.m. due to continents 1500 meters high *858 633 626 | 625 625 625
Ditto in British tons per sq. inch, for same
Dco?ltinents. e e e e 543 4-01 397 | 396 | 396 | 396
Depth in British miles at which this stress is Centre ;

attained . . . . . . . . . . . of earth 1146 725 552 420 347

N.B.—The continents referved to are supposed to be of the earth’s mean density and are equivalent to actual
continents of double the height.

Thus far we have only considered the stress-differences at the equator immediately
underneath the centres of the continents, but we must now see how they differ as the
latitude of the place of observation increases. In order to attain this result a good
deal of computation was necessary.

For this purpose I calculated P—R and 2T for a number of points and found the
square root of the sum of these squares. As the computations were laborious, and as
the results given in the following table are amply sufficient for the purpose in hand,
I did not think it worth while to trace the changes to a greater depth than r="7.
Moreover the correctness of the last significant figures given cannot be guaranteed,
although I believe that it is correct in most cases.

TaBLE VI-—Showing the stress-difference due to the several harmonic inequalities
at various depths and in various latitudes.

% Equator. Lat. 6°. Lat. 12°, 7 Equator. | Lat. 6°. Lat. 12°.
r=1. 316 316 316 = ‘021 015 000
o r="9 736 732 721 8 r="9 859 ‘853 853
< r="8 1112 1-108 1097 r="8 798 795 797
r="7 1-443 1440 1-431 r='7 506 505 507
r=1. ‘079 ‘074 ‘061 r=1. 014 ‘008 ‘007
4 r="9 727 719 700 10 r="'9 857 854 860
r="8 1044 - 1038 1025 =18 631 630 635
r="7 1116 1-113 1:104 r="7 807 307 309
r=1. ‘036 ‘031 ‘016 r=1 010 ‘003 ‘019
6 r="9 ‘817 -810 00 12 r="9 827 824 ‘835
r="8 953 949 945 r="8 481 -481 486
p="7 788 786 785 r="7 179 179 181

The numbers given in the column marked “equator” might be computed from (41),
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and are those exhibited graphically in fig. 4; they are here given as a means of
comparison with the numbers corresponding to latitudes 6° and 12°.

The result to be deduced from this table is that the lines of equal stress-difference
are very nearly parallel with the surface, and that it is for all practical purposes
sufficient to know the stress-difference immediately under the centre of the continents.

We have already seen in § 6 that for harmonics of infinitely high orders the lines of
equal stress-difference are rigorously parallel with the mean surface.

$ 8. On the stresses due to the weight of an equatorial continent.

The actual continents and seas on the earth’s surface have not got quite the regular
wavy character of the elevations and depressions which have been treated hitherto.
The subject of the present section possesses therefore a peculiar interest for the
purpose of application to the earth. Had I however foreseen, at the beginning, the
direction which the results of this whole investigation would take, it is probable that
I might not have carried out the long computations which were required for discussing
the case of an isolated continent. But now that that end has been reached, it seems
worth while to place the results on record.

The function exp.[— cos */ sin *a](where 0 is colatitude) obviously represents an equa-
torial belt of elevation, and I therefore chose it as the form of the required equatorial
continent. This function has to be expanded in a series of zonal harmonics in order
to apply the analytical solutions for the stresses produced by the weight of the
continent. ‘

It is obvious by inspection that the odd zonal harmonics can take no part in the
representation of the function, and it was on this account that I have above only
worked out the cases of the even zonal harmonics.

The multiplication of this function by the successive LEGENDRE'S functions, and
integration over the surface of the sphere, are operations algebraically tedious, and
wholly uninteresting, and I therefore simply give the results.

I find then that if a=10°, and

i B e o RE=2 .
g;= sin’ ﬁ—éqsm’ 0 cos? 0 + ——— sin™* @ cos* —&ec.

4!
Then
2 0t e — B = Bys, + Bysi+Buso+ Bsss+ Biosio+ Bresie+ - - -
where (42)
BO= .3078, Bz=.3673, B‘L=‘3339’ BG:.2829’ BS=.2252’ BIO=‘1688’ l <

312:—.1193 A

B, is put on the left-hand side in order that the mean value of the function may be
zero. The B’s obviously decrease very slowly, and as I stop with the 12th harmonic,
the representation of the function is very imperfect.

2 &2
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Plate 20, fig. 5, illustrates the results of the representation, the portion of a circle
marked “mean level of earth” represents a meridional section of the earth; the
dotted curve marked ¢ inequality to be represented ” shows the true value of the function
2exp.[ — cos? 0/ sin® a]— B, ; the curve marked “representation” shows the right-hand
side of (42) stopping with the 12th harmonic; the second curve is the same without
the 2nd harmonic constituent B,s,, and it is introduced for the reasons explained in the
discussion and summary at the end.

The equatorial value of the exponential function is 1792, that of the “representa-
tion ”is 1'497, and that of “the representation without the 2nd harmonic” is 1°130.

The polar value of the exponential is —'3078, that of the “representation” is
—'0830, and that of “the representation without 2nd harmonic” is +-6516. This
latter function thus gives us an equatorial continent and a pair of polar continents of
less height.

The extreme difference of height in the ¢ representation” between the elevation at
the equator and the depression at the pole is (1'497 4-'083)h or'1'58%. I do not exactly
know the extreme difference in the case where the 2nd harmonic is omitted, because
I have not traced the inequality throughout, but it is probably about 1'3 or 1-4h.

Now let A; be the numerical value, as computed for § 7, of the stress-difference due
to the harmonic spheroid 5;, Then it has been shown above that the stress-difference
due to the spheroid whose equation is r=a-hs; is —2(i—1)gwhA;/(2i+1).

Now stress-difference is a non-linear function of the componeht stresses P, R, T, and
therefore the stress-difference due to a compound harmonic spheroid is not in general
the sum of the stress-differences due to the constituent harmonic spheroids. At any
point, however, where the principal stress-axes ave all coincident in direction and where
all the greater stress-axes coincide, and not a greater with a less, and where T=0, the
stress-difference is linear and is the sum of the constituent stress-differences. This is
the case at the equator for the present equatorial continent.

Hence, if A be the stress-difference at the equator due to the spheroid,

o r=a+h(Bysy+Biss+ - - - +Bsi)
- 'We have

A=—gu}h[%IB2A2+%B&Azk_l—%%IBGAG_I-"}T%_IBSAS-I-%IBIOAIO+%%1812A12] e (43)

In this formula the A/s are the numbers which were computed for drawing Plate 20,
fig. 4, from the formula (41), namely

W+ D) @A) rN (R 3
R TN <a> [1 <a> +(¢2—1)(2¢+3)]
By using these computations I have drawn Plate 20, fig. 6. The vertical ordinates

are —A--gwh, and the horizontal are the distances from surface or centre of the

sPhere.
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The maxima in the two curves are merely found graphically, and the distances where
the maxima are reached (viz.: 660 and 590 miles from the surface) are written down
on the supposition that the radius of the sphere is 4000 miles.

In the discussion in the second part of this paper, I have endeavoured to make an
estimate of the proper elevation to attribute to these isolated continents; so as to make
the case, as nearly as may be, analogous to the earth.

Although it appears impossible to make an accurate estimate, I conclude that it will
not be excessive if we assume that the greatest difference of height, between the
highest point in the equatorial elevation and the approximately spherical remainder of
the globe, is 2000 meters. ,

Accordingly for the representation 1 put 1:58A=2000, and for the second curve
1'4h=2000; these give h=127 X 10° c.m. and h=1"4 X 10° c.m. respectively.

Taking w=566, then for the representation we have wh='72 tonnes per square
centimeter, and for the other curve wh="79 of the same units. The maximum stress-
differences are ‘91lwh and *76wh respectively.

_Therefore for the equatorial table-land (called above the representation) we have a
maximum stress-difference of ‘66 metric tonnes per square c.m. or 4'1 British tons per
square inch; and for the equatorial table-land balanced by a pair of polar continents
(2nd harmonic omitted) we have a maximum stress-difference of ‘60 tonne per square
c.m. or 3'8 tons per square inch.

I therefore conclude that our great continental plateaus produce a stress-difference of
about 4 tons per square inch at a depth of 600 or 700 miles from the earth’s surface.

§$ 9. On the strength of various substances.

In order to have a proper comprehension of the strength which the earth’s mass
must possess in order to resist the tendency to rupture, produced by the unequal
distribution of weights on the surface, it is' necessary to consider the results of
experiments.

RANKINE* gives a large number of results obtained by various experimenters, and
Sir WirLriam THOMSON also gives similar tables in his article on ¢ Elasticity.t

Amongst other constants Sir WriLLiam gives YouNa’s modulus and the greatest
elastic extension. If the materials of a wire remain perfectly elastic when the wire is
just on the point of breaking under tension, then the product of Youne’s modulus
into the greatest elastic extension should be equal to what is called the tenacity,
which is defined as the breaking tension per square centimeter of the area of the wire.

¥ ¢ Useful Rules and Tables:” GrirriN, London, 1873, p. 191, ef seq.

t ¢ Elasticity:> Brack, Edinburgh, 1878. This is the article from the ;Encyclopedia Britannica,” but
it is also published as a separate work,
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If however a permanent set begins to take place before the wire breaks, this product
should be less than the tenacity. 1 do not see how it can ever be greater, unless
there be a marked departure from Hook’s law “ut tensio sic vis;” or different sets of
experiments with the same class of material might make it seem greater. In some of
the results given by Sir Wirriam TaomsoN the product of modulus and elastic
extension is however greater than tenacity.

Ordinary experience would lead one to suppose that such materials as lead and
copper would undergo a considerable stress beyond the limits of perfect elasticity,
before breaking. It is surprising therefore to see how nearly identical this product is
to the tenacity—indeed in the case of lead absolutely identical, as may be seen in the
table below.

With regard to the earth we require to know what is the limiting stress-difference
under which a material takes permanent set or begins to flow, rather than the stress-
difference under which it breaks ; for if the materials of the earth were to begin to
flow, the continents would sink down and the sea bottoms rise up.

It will be seen from the definition of tenacity given above that it is the rupturing
stress-difference for tensional stresses. There is no word specially applied to rupturing
stress-difference under pressure.

I am inclined to think that for the purposes of this investigation these tables in
most cases rate the strength of materials somewhat too highly; for it seems probable
that a permanent set would be taken, if a material were subjected for a long time to a
stress-difference, which is a considerable fraction of the limiting value. We are likely
to know more on this point in some years time when the wires hung by Sir WiLrLiam
TrOMSON in the tower of Glasgow University have been subjected to several years of
tension. However this may be I give the results of some of the experiments as
collected and quoted by Sir WirLLiam TrHoMsoN and the late Professor RANKINE.
The first table of tenacity, except the results denoted by the letter R, are taken from
Sir WirLriam TmoMsoN. The second table of crushing stress-difference is taken
entirely from RANKINE. The multiplications and reductions to different units I have
done myself. |
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TaBLE VIIL.—Limiting stress-difference.

Produced by tension. Produced by crushing.
. Stress-difference at which Breaking stress-difference
Bg::‘:{slst_lg permanelnt set begins in— e itl;—sfl e
. difference in .
Material. . Material.
e msglg(g:lges Metric tonnes| British tons whena Metric tonnes| British tons
: er squate '
centimeter. | Contimeter, | inch. contizmeter. | © inch.
Sheet lead. 23 23 1-46 Strong red brick 077 49
Cast tin 416 417 264 Strong sandstone . -39 245
» .o ‘325 (R) . 2:06 (R)| (F) Strong lime-
Wood (ash) . 1-20 1-20 761 stone *60 3:80
Cast brass. .o1er 1-27 805 Marble -39 2:45
,, irom . . |94 to 2:04 {114 to 1-87|7°23 to 1186 | Granite . . ‘39 to 77 2:45 to 4-91
Drawn copper . 410 4:00 2536 (F) Granite (Mount
English steel piano- Sorrel) . . . ‘905 574
forte wire . 2362 2356 1496 (F) Grauwacke. 1-19 754
(R) Brick, cement . 020 to ‘021 .. *125 to '134 || Ash(alongthe graln) 63 4:02
(R) Glass . ‘66 4-20 Cast brass 73 4:60
(R) Slate . 68 to 90 43 to 57 || Wrought iron . [2°52 to 2'84 16 to 18

Nore.—The second and third columns give the product of Youna’s modulus into greatest elastic exten-
sion, and this should give the stress-difference when permanent set begins. RANKINE does not give the
data for this quantity, but the breaking stress-difference is given in both metric and British units, the
latter being in the third column.

In the second half of the table the results marked F are from Sir WrrLLiam FAIRBAIRN’S experiments.

The only cases in these two tables in which we have the opportunity of comparing
the strength for resisting the stress-difference, when produced in the two manners, is
for the materials cast brass and ash; in both cases we see that the substance is
considerably weaker for crushing than for tension.

I should be inclined to suppose that the crushing strength is more nearly the datum
we require for the case of the stresses in the earth.

In the first half of the table we probably see the effect of permanent set in the
cases of copper and pianoforte wire (compare 4'00 with 4:10, and 23-56 with 23'62),
but it is surprising that the contrast between the two columns is not more marked.

§ 10. On the case when the elastic solid is compressible.

It appears desirable to know how far the results of the preceding investigation may
differ, if the elastic solid be compressible. According to the views of Dr. RirrEg,
referred to in the summary, this must be largely the case.

As T did not examine this point until after the above was completed, it seemed
preferable to make a fresh beginning, rather than to modify the whole investigation.
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The process is however so closely analogous, that it presents no difficulty, and may be
dismissed shortly. I shall accordingly follow closely the processes of §§1 and 2.

If a solid be very compressible it takes a comparatively small hydrostatic pressure
to produce a given amount of compression ; that is to say, although the compressibility
is large, the modulus of compressibility is small compared with that of rigidity. The
modulus of compressibility I shall call the incompressibility. In the preceding investi-
gation the converse was the case, for the incompressibility was infinite compared with
the rigidity. By the definitions of w and v in § 1, the incompressibility

k=w—%v.

It will be found convenient to use k£ and o as the two moduli, which define the
nature of the elastic solid. :
- In the denominators in K I, Gf; of (1), the expression (2(:41)*+1)o—(2¢41)v
occurs, this I shall call K, in analogy with 1.

Then
K=2i(1—1)w+3(2c+1)k

If we develop the last differential coefficient in the expression (1) for a, we find

2vKa=3k<ii1 a®— °>‘ W—Hw{(

+2W] C L (44)
Also

and

(46)

Differentiating (44) with regard to @, and substituting in (46) we find

KP= Sk[(—wu2 7 )d w +1W]+2w( _ z)a?_P_V

(47)

da?

Again, differentiating (44) with regard to z, writing down dy/dx by symmetry, and
adding the two together, we have from (46)

— A, e

aw d W d w a;w
dedz dx

tio(@—) o L (48)

From (47) and (48) the other stresses may be written down by cyclic changes of
letters.
Now let us suppose that the incompressibility is small compared with the rigidity.
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Then o becomes nearly equal to v, and % is small compared with v and w. Also K
becomes nearly equal to 2¢(t—1)w. Hence in this case

1 BEW
T G ey (19)
1 EW
=35 —") iz J

Now if we suppose W to be a zonal harmonic of degree ¢, and only consider the
state of stress at the equator, immediately underneath the centre of the elevation,
then T is zero and by (15)

P= 2@8 : g (a?—7?)ri=2
R=— # (=122
2(i—1)
And
A=P—R=,;((2£i1—)2(a2—7'9)7“""2 e e e e e e (50)

If ¢ be large A=i(a®—r?)r~2

In § 7 we have found this identical result, under the like conditions, when the solid
is incompressible.

Now take the case of the 2nd harmonie, so that

. W=r2(3— cos? ) =1(a2+1°—222)
And we have (s =3 Y

P= j(ar)
Q= =)
R=—3(c—r)
T= 0

Thus throughout the spheroid, the principal stress-axes are parallel and perpen-

dicular to the polar axis; also
A= (0(,2_742)

Hence the central stress-difference is a%.  If the solid be incompressible it was found
to be 8a®. Hence infinite compressibility largely relieves the stress-difference due to
ellipticity of figure. Next take the case when the harmonic is of the 4th order.

Then at the equator we have by (50)

A= %7_7.2(“2_,)&) =L3£,r2(a2__,r2)

The maximum is reached, when r*=JLa? or r="707a, and is equal to Z=1-167.
Comparing this with the Table V. (¢) §7, we seée that infinite compressibility makes
very little difference, for 707 differs little from 714 and 1°167 from 1°118.

MDCCCLXXXIL 2 F
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It will now be shown that whatever may be the compressibility of the solid, we get
identically the same solution in the case when the harmonic is of an infinitely high
order. This is the problem of the harmonic mountains and valleys corrugating a mean
level surface, which was considered in § 6. The same notation will be adopted here.

Both 7 and a are infinite, & becomes a—§, and ia®/(t—1)—r*=a’—r*=2a¢. If the
substitutions here suggested be made in (47) and (48), it will be found that the terms
with o as a factor are multiplied by a¢ (two infinites), whilst none of the terms with %
as a factor involve more than one infinite. Hence the latter terms are negligeable
compared with the former. -

Again ¢ being infinite, K=2:». Thus if 7 and « be infinite (47) and (48) reduce to

BW S PN
P= (i) g, Repalitad)’yys =~ (it
but a/i=b, therefore
@>wW
P b§ 52’ R bg d 9 ) bfclé}'d/

In (36) we found the effective potential, which produced the same state of stress as
the weight of the mountains whose equation was — &=/ cos z/b; the result was

2
W=— gwh e~ cos A
Hence in the present case

Z

Pe=— whge‘f/ cos_ R= wkf —& cos , T= whg — gin -
guwhy g 9 5

These results are identical with equations (38), which gave the stresses when the
elastic solid was incompressible.

It may be concluded from this that, except for the case of the 2nd harmonic
inequality, compressibility makes very little difference, and for the higher harmonics it
makes no difference at all.

11.
SUMMARY AND DISCUSSION.

The existence of dry land proves that the earth’s surface is not a figure of
equilibrium appropriate for the diurnal rotation.

Hence the interior of the earth must be in a state of stress, and as the land does
not sink in, nor the sea-bed rise up, the materials of which the earth is made must be
strong enough to bear this stress. '

‘We are thus led to inquire how the stresses are distributed in the earth’s mass, and
what are their magnitudes. These points cannot be discussed without an hypothesis
as to the interior counstitution of the earth.
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In this paper I have solved a problem of the kind indicated for the case of a
homogeneous incompressible elastic sphere, and have applied the results to the case
of the earth.

It may of course be urged that the earth is not such as this treatment postulates.

The view which was formerly generally held was that the earth consists of a solid
crust floating on a molten nucleus. It has also been lately maintained by Dr. Avcust
RiTTER in a series of interesting papers that the interior of the earth is gaseous.®
A third opinion, contended for by Sir WiLLiam THoMsON, and of which I am myself
an adherent, is that the earth is throughout a solid of great rigidity ; he explains
the flow of lava from volcanoes either by the existence of liquid vesicles in the interior,
or by the melting of solid matter, existing at high temperature and pressure, at points
where diminution of pressure occurs.

There is another consideration, which is consistent with Sir Wrirriam THOMSON'S
view, and which was pointed out to me by Professor SToxEs. It may be that under-
neath each continent there is a region of deficient density; then underneath this
region there would be no excess of pressure.

For the present investigation it is to some extent a matter of indifference as to
which of these views is correct, for if it is only the crust of the earth which possesses
rigidity, or if Professor STOKES'S suggestion of the regions of deficient density be
correct, then the stresses in the crust or in the parts near the surface must be greater
than those here computed—enormously greater if the crust be thin,' or if the region
of deficient density be of no great thickness. _

With regard to the property of incompressibility which is here attributed to the
elastic sphere, it appears from §10 that even if we suppose the elastic solid to be very
highly compressible, yet the results with regard to the internal stresses are almost the
same as though it were incompressible. I think tlie hypothesis of great incompressi-
bility is likely to be much nearer to the truth than is that of great compressibility.
I shall therefore adheve to the supposition of infinite incompressibility, bearing in
mind that even great compressibility would not much affect most of the results.

I take then a homogeneous incompressible elastic sphere, and suppose it to have the

* ¢ Anwendung der mechanischen Wirmetheorie auf kosmologische Probleme.’ Caru Riwmrrug,
Hannover, 1879. This is a reprint of six papers in WIEDEMANN'S Annalen.

Dr. RirTER contends that the temperature in the interior of the planet is above the critical tempera-
ture and that of dissociation for all the constituents, so that they can only exist as gas. Data are wanting
with regard to the mechanical properties of matter at, say 10,000° Fahr., and a pressure of many tons to
the square inch. Is it not possible that such ¢ gas’ may have the density of mercury and the rigidity
and tenacity of granite ? Although such a conjectural “ gaseous ” solid might possess high rigidity, it
almost certainly would have great compressibility: but it is proved in § 10 that the compressibility will
make exceedingly little difference in the result of the present investigation excepting in the case of the
2nd harmonic inequality.

+ The evaluation of the stresses in a crust, with fluid beneath, would be tedious, but not more difficult
than the present investigation. I may perhaps undertake this at some future time.

2 F 2
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power of gravitation and to be superficially corrugated. In consequence of mathe-
matical difficulties the problem is here only solved for the particular class of surface
inequalities called zonal harmonics, the nature of which will be explained below.

Before discussing the state of stress produced by these inequalities, it will be con-
venient to explain the proper mode of estimating the strength of an elastic solid under
stress. :

At any point in the interior of a stressed elastic solid there are three lines mutually
at right angles, which are called the principal stress-axes. Inside the solid at the
point in question imagine a small plane (say a square centimeter or inch) drawn
perpendicular to one of the stress-axes; such a small plane will be called an inter-
face.* The matter on one side of the ideal inter-face might be removed without
disturbing the equilibrium of the elastic solid, provided some proper force be applied
to the inter-face; in other words, the matter on one side of an inter-face exerts a force
on the matter on the other side. Now a stress-axis has the property that this force
is parallel to the stress-axis to which the inter-face is perpendicular. Thus along a
stress-axis the internal force is either purely a traction or purely a pressure. Treating
pressures as negative tractions, we may say that at any point of a stressed elastic
solid, there are three mutually perpendicular directions along which the stresses are
purely tractional. The traction which must be applied to an inter-face of a square
centimeter in area, in order to maintain equilibrium when the matter on one side of
the inter-face is removed, is called a principal stress, and is of course to be measured
by grammes weight per square centimeter.

If the three stresses be equal and negative, the matter at the point in question is
simply squeezed by hydrostatic pressure, and it is not likely that in a homogeneous
solid any simple hydrostatic pressure, absolutely equal in all directions, would ever
rupture the solid. The effect of the equality of the three stresses when they are
positive and tractional is obscure, but at least physicists do not in general suppose
that this is the cause of rupture when a solid breaks.

If the three principal stresses be unequal, one must of course be greatest and one
least, and there is reason to suppose that tendency of the solid to rupture is to be
measured by the difference between these principal stresses.

In one very simple case we know that this is so, for if we imagine a square bar, of
which the section is a square centimeter, to be submitted to simple longitudinal ten-
sion, then two of the principal stresses are zero (namely, the stresses perpendicular to
the faces of the rod), and the third is equal to the longitudinal traction. The traction
under which the rod breaks is a measure of its strength, and this is equal to the
difference of principal stresses.

If at the same time the rod were subjected to great hydrostatic pressure, the break-
ing load would be very little, if at all affected; now the hydrostatic pressure subtracts

#* This term is due to Professor JAMES THOMSON.
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the same quantity from all three principal stresses, but leaves the difference between
the greatest and least principal stresses the same as before.

Difference of principal stresses may also be produced by crushing.

In this paper I call the difference between the greatest and least principal stresses
the “stress-difference,” and I say that, if calculation shows that the weight of a certain
inequality on the surface of the earth will produce such and such stress-difference at such
and such a place, then the matter at that place must be at least as strong as matter
which will break when an equal stress-difference is produced by traction or crushing.

I shall usually estimate stress-difference by metric tonnes (a million grammes) per
square centimeter, or by British tons per square inch.

In Table VIL, § 9, are given the experimentally determined values of the breaking
stress-difference for various substances. The table is divided into two parts, in the
former of which the stress-difference was produced by tension, and in the latter by
crushing. It is not necessary here to advert to the difference in meaning of the
numbers given in the first column and those given in the two latter columns in the
first half of the table. . o

The cases of wood and cast brass are the only ones where a comparison is possible
between the two breaking stress-differences, as differently produced. It will be seen
that the material is weaker for crushing than for tension. For the reasons given in
that section, I am inclined to think that these tables rate the strength of the materials
somewhat too highly for the purposes of this investigation. I conceive that the
results derived from crushing are more appropriate for the present purpose than those
derived from tension ; and fortunately the results for various kinds of rocks seem to
have been principally derived from crushing stresses.

This table will serve as a means of comparison with the numerical results derived
below, so that we shall see, for example, whether or not at 500 miles from the surface
the materials of the earth are as strong as granite.

We may now pass to the mathematical investigation. It appears therefrom that
the distribution of stress-difference is quite independent of the absolute heights and
depths of the inequalities. Although the questions of distribution and magnitude of
the stresses are thus independent, it will in general be convenient to discuss them
more or less simultaneously.

The problem has only been solved for the class of superficial inequalities called
zonal harmonics, and their nature will now be explained.

A zonal harmonic consists of a series of undulations corrugating the surface in
parallels of latitude with reference to some equator on the globe ; the number of the
undulations is estimated by the order of the harmonic. The harmonic of the second
order is the most fundamental kind, and consists of a single undulation forming an
elevation round the equator, and a pair of depressions at the poles of that equator ; it
may also be defined as an elliptic spheroid of revolution, and the absolute magnitude
is measured by the ellipticity of the spheroid.
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If the order of the harmonic be high, say 80 or 40, we have a regular series of
mountain chains and intervening valleys running round the sphere in parallels of
latitude.

For the sake of convenience I shall always speak as though the equator were a
region of elevation, but the only effect of changing elevations into depressions, and
vice versd, is to diametrically reverse the directions of all the stresses.

The harmonics of the orders 2, 6, 10, &c., have depressions at the poles of the
sphere ; those of orders 4, 8, 12, &c., have elevations at the pole.

The harmonic -of the fourth order consists of an equatorial continent and a pair of
circular polar continents, with an intervening depression. That of the sixth order
consists of an equatorial continent and a pair of annular continents in latitudes
(about) 60° on one and the other side of the equator. The 8th harmonic brings
down these new annular continents to about latitude 45° and adds a pair of polar
continents ; and so on.

By a continuation of this process the transition to the mountain chains and valleys
is obvious.

In §5 the case of the 2nd harmonic is considered. As above explained the
sphere is deformed into a spheroid of revolution. The investigation also applies to
the case of a rotating spheroid, such as the earth, with either more or less oblateness
than is appropriate for the figure of equilibrium.

The lines throughout a meridional section of the spheroid along which the stress-
difference is constant are shown in Plate 19, fig. 1, and the numbers written on the
curves give the relative magnitude of the stress-difference.

It is remarkable that the stress-difference is the same all over the surface. In the
polar regions the stress-difference diminishes as we descend into the spheroid and then
increases again ; in the equatorial regions it always increases as we descend. The
maximum value is at the centre, and there the stress-difference is eight times as great
as at the surface.

If the elastic solid be highly compressible the stress-differences are not nearly so
great as on the hypothesis of incompressibility.. In all the other cases considered in
this paper compressibility makes practically no difference in the results.

On evaluating the stress-difference, on the hypothesis of incompressibility, arising
from given ellipticity in a spheroid of the size and density of the earth, it appears
that if the excess or defect of ellipticity above or below the equilibrium value
(namely 545 for the homogeneous earth) were 155, then the stress-difference at the
centre would be 8 tons per square inch, and accordingly, if the sphere were made of
material as strong as brass (see Table VIL), it would be just on the point of rupture.
Again if the homogeneous earth, with ellipticity 35, were to stop rotating, the
central stress-difference would be 33 tons per square inch, and it would rupture if
made of any material excepting the finest steel.
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A rough calculation® will show that if the planet Mars has ellipticity 4 (about
twice the ellipticity on the hypothesis of homogeneity) the central stress-difference
must be 6 tons per square inch. It was formerly supposed that the ellipticity of the
planet was even greater than g%, and even if the latest telescopic evidence had not
been adverse to such a conclusion, we should feel bound to regard such supposed
ellipticity with the greatest suspicion, in the face of the result just stated.

The state of internal stress of an elastic sphere under tide-generating forces is
identical with that caused by ellipticity of figure.t Hence the investigation of §5
gives the distribution of stress-difference caused in the earth by the moon’s attraction.
In Plate 19, fig. 1, the point called “the pole” is the point where the moon is in the zenith.

Computation shows that the stress-difference at the surface, due to the lunar tide-
generating forces, is 16 grammes per square centimeter, and at the centre eight times
as much. These stresses are considerable, although very small compared with those
due to terrestrial inequalities, as will appear below.

In § 6 the stresses produced by harmonic inequalities of high orders are considered.
This is in effect the case of a series of parallel mountains and valleys, corrugating a
mean level surface with an infinite series of parallel ridges and furrows. In this case
compressibility makes absolutely no difference in the result, as shown in §10. =~

It is found that the stress-difference depends only on the depth below the mean
surface, and is independent of the position of the point considered with regard to
ridge and furrow ; the direction of the stresses does however depend on this latter
consideration.

In Plate 19, fig. 2, is shown the law by which the stress-difference increases and then
diminishes as we go below the surface. The vertical ordinates of the curve indicate the
relative magnitude of the stress-difference, and the horizontal ones the depth below the
surface. The depth OL on the figure is equal to the distance between contiguous
ridges, and the figure shows that the stress-difference is greatest at a depth equal to
&4+ of OL. |

The greatest stress-difference depends merely on the height and density of the
mountains, and the depth at which it is reached merely on the distance from ridge to
ridge.

Numerical calculation shows that if we suppose a series of mountains, whose crests
are 4000 meters or about 13,000 feet above the intermediate valley-bottoms, formed
of rock of specific gravity 2'8, then the maximum stress-difference is 2'6 tons per
square inch (about the tenacity of cast tin); also if the mountain chains are 314 miles
apart the maximum stress-difference is reached at 50 miles below the mean surface.

* The data for the calculation are: Ratio of terrestrial radius to Martian radius 1-878. Ratio of
Martian mass to terrestrial mass *1020. Whence ratio of Martian gravity to terrestrial gravity -3596.
Central stress-difference, due to ellipticity e, 996e tons per square inch. ¢ Homogeneous” ellipticity of
Mars 1155 and 238 equal to 6..

+ This is subject to certain qualifications noticed in § 5.
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Tt may be necessary to warn the geologist that this investigation is approximate in a
certain sense, for the results do not give the state of stress actually within the mountain
prominences or near the surface in the valley-bottoms. The solution will however be
very nearly accurate at some five or six miles below the V&]léy—bottoms. The solution
shows that the stress-difference is nil at the mean surface, but it is obvious that both
the mountain masses and the valley-bottoms are in some state of stress.

The mathematician will easily see that this imperfection arises, because the problem
really treated is that of an infinite elastic plane, subjected to simple harmonic tractions
and pressures.

To find the state of stress actually within the mountain masses would probably be
difficult.

The maximum stress-difference just found for the mountains and valleys obviously
cannot be so great as that at the base of a vertical column of this rock, which has a
section of a square inch and is 4000 meters high. The weight of such a column is 7°1
tons, and therefore the stress-difference at the base would be 7°1 tons per square inch.
The maximum stress-difference computed above is 26, which is about three-eighths
of 71 tons per square inch. Thus the support of the contiguous masses of rock, in the
case just considered, serves as a relief to the rock to the extent of about five-eighths
of the greatest possible stress-difference. This computation also gives a rough estimate
of the stress-differences which must exist if the crust of the earth be thin. It is
shown below that there is reason to suppose that the height from the crest to the bottom
of the depression in such large undulations as those formed by Africa and America is about
6000 meters. The weight of a similar column 6000 meters high is nearly 11 tons.

In § 7 I take the cases of the even zonal harmonics from the 2nd to the 12th, but
for all except the 2nd harmonic only the equatorial region of the sphere is considered.

Plate 19, fig. 3, shows an exaggerated outline of the equatorial portion of the inequali-
ties; it only extends far enough to show half of the most southerly depression, even for
the 12th harmonic. 1t did not seem worth while to trace the surfaces of equal stress-
difference throughout the spheroid, but the laborious computations are carried far
enough to show that these surfaces must be approximately parallel to the surface of
the mean sphere. It is accordingly sufficient to find the law for the variation of stress-.
difference immediately underneath the equatorial belt of elevation. It requires com-
paratively little computation to obtain the results numerically, and the results of the
computation are exhibited graphically in Plate 20, fig. 4.

Table V. (b), § 7, gives the maximum stress-differences, resulting from these several
inequalities, computed under conditions adequately noted in the table itself. It will
be convenient to postpone the discussion of the results.

In § 8 I build up out of these six harmonics an isolated equatorial continent. The
nature of the elevation 1s exhibited in Plate 20, fig. 5, in the curve marked ¢ represen-
tation;” no notice need be now taken of the dotted curve. This curve exhibits a belt
of elevation of about 15° of latitude in semi-breadth, and the rest of the spheroid is
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approximately spherical. This kind of elevation requires the 2nd as one of its harmonic
constituents, and this harmonic means ellipticity of the whole globe. Now it may
perhaps be fairly contended that on the earth we have no such continent as would
require a perceptible 2nd harmonic constituent. I therefore give in Plate 20, fig. 5, a
second curve which represents an equatorial belt of elevation counterbalanced by a pair
of polar continents in such a manner that there is no second harmonic constituent.

I have not attempted to trace the curves of equal stress-difference arising from
these two kinds of elevation, but I believe that they will consist of a series of much
elongated ovals, whose longer sides are approximately parallel with the surface of the
globe, drawn about the maximum point in the interior of the sphere at the equator.
The surfaces of equal stress-difference in the solid figure will thus be a number of
flattened tubular surfaces one within the other.

'At the equator however the law of variation of stress-difference is easy to evaluate,
and Plate 20, fig. 6, shows the results graphically, the vertical ordinates representing
stress-difference and the horizontal the depths below the surface. The upper curve in
Plate 20, fig. 6, corresponds with the ¢ representation curve” of Plate 20, fig. 5, and
the lower curve with the case where there is no 2nd harmonic constituent.

The central stress-difference, which may be observed in the upper curve, results
entirely from the presence of the 2nd harmonic constituent in the corresponding
equatorial belt of elevation.

The maximum stress-differences in these two cases occur at about 660 and 590 miles
from the surface respectively.

We now come to perhaps the most difficult question with regard to the whole
subject—namely, how to apply these results most justly to the case of the earth.

The question to a great extent turns on the magnitude and extent of the superficial
inequalities in the earth. As the investigation deals with the larger inequalities, it
will be proper to suppose the more accentuated features of ridges, peaks, and holes to
be smoothed out.

The stresses caused in the earth by deficiency of matter over the sea beds are the
same as though the seas were replaced by a layer of rock, having everywhere a
thickness of about 2:92 or nearly ;% of the actual depths of sea.

The surface being partially smoothed and dried in this manner, we require to find
an ellipsoid of revolution which shall intersect the corrugations in such a manner that
the total volume above it shall be equal to the total volume below it.

Such a spheroid may be assumed to be the figure of equilibrium appropriate to the
earth’s diurnal rotation ; if it departs from the equilibrium form by even a little, then
we shall much underestimate the stress in the earth’s interior by supposing it to be a
form of equilibrium.

Professor BRUNS has introduced the term * geoid ” to express any one of the “level ”
surfaces in the neighbourhood of the earth’s surface, and he endeavours to form an
estimate of the departure of the continental masses and sea-bottoms from some mean

MDCCCLXXXIL, 26
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geoid.*  From the geodesic point of view the conception is valuable, but such an
estimate is scarcely what we require in the present case. The mean geoid itself will
necessarily partake of the contortions of the solid earth’s surface, even apart from
disturbances caused by local inequalities of density, and thus it cannot be a figure of
equilibrium.

Thus, even if we were to suppose that the solid earth were everywhere coincident
with a geoid—which is far from being the case—a state of stress would still be
produced in the interior of the earth.

An example of this sort of consideration is afforded by the geodesic results arrived
at by Colonel Crarke, R.E.t who finds that the ellipsoid which best satisfies
geodesic measurement, has three unequal axes, and that one equatorial semi-axis is
1524 feet longer than the other. Now such an ellipsoid as this, although not exactly
one of BRUNS geoids, must be more nearly so than any spheroid of revolution ; and
yet this inequality (if really existent, and Colonel CLARKE’S own words do not express
any very great confidence) must produce stress in the earth. Colonel CLARKE’s
results show an ellipticity of the equator equal to tg#37, and this in the homogeneous
elastic earth will be about equivalent to ellipticity 37855 ; such ellipticity would
produce a central stress-difference of 35%%% or nearly one-third of a British ton per
square inch.

From this discussion it may, I think, be fairly concluded that if we assume the sea-
level as being the figure of equilibrium and estimate the departures therefrom, we shall
be well within the mark. .

The -average height of the continents is about 350 meters (1150 feet), and the
average depth of the great oceans is in round numbers 5000 meters (16,000 feet) ;
but the latter datum is open to much uncertainty.] When the sea is solidified into
rock the 5000 meters of depth is reduced to 3200 meters below the actual sea-level.
Thus the average effective depression of sea-bed is about nine times as great as the
average height of the land. I shall take it as exactly nine times as great, and put the
depth as 8150 meters; but it is of course to be admitted that perhaps eight and
perhaps ten might be more correct factors.

In the analytical investigation of this paper the outlines of the vertical section of the
continents and depressions are always sweeping curves of the harmonic type, and the
magnitude of the elevations and depressions are estimated by the greatest heights
and depths, measured from a mean surface which equally divides the two.

We have already supposed the outlines of continents and sea-beds to have been
smoothed down into sweeping curves, which we may take as being, roughly speaking,
of the harmonic type. The smoothing will have left the averages unaffected.

* ¢Die Figur der Erde.” Von Dr. H. Bruns. Berlin: Stankizwicz, 1878.

4 Phil. Mag., Aug., 1878.

t In a previous paper, ¢ Geological Changes, &c.,” Phil. Trans., Vol. 167, Part I., p. 295, T have
endeavoured to discuss this subject, and references to a few authorities will be found there.
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The averages are not however estimated from a mean spheroidal surface, but from
one which is far distant from the mean.

The questions now to be determined are as follows :—What is the proper greatest
height and depression, estimated from a mean spheroid, which will bring out the above
averages estimated from present sea-level, and what is the position of the mean
spheroid with reference to the sea-level.

From the solution of the problem considered in the note below,* it appears that, if

* Conceive a series of straight harmonic undulations corrugating a mean horizontal surface, and
suppose them to be flooded with water. This will represent fairly well the undulations on the dried earth,
and the water-level will represent the sea-level.

Suppose that the average heights and depths of the parts above and below water are known, and
that it is required to find the position of the mean horizontal surface with reference to the water-level,
and the height of the undulations measured from that mean surface.

Take an origin of coordinates in the water-level, the axis of # in the water-level and perpendicular to
the undulations, and the axis of y measured upwards.

Let

y=h(cos z—cosa)
be the equation to the undulations.

. . 1 e b, . .
The average height of the dry parts is clearly %j ydw or ~(sin a—a cos a). Similarly the average

Lk [
depth below water is 773& [sin (w—a) — (7 —a) cos (r—a)] or S, sinat (r—a) cos a

If the latter average be p times as great as the former

ph cos a(% tan a—l):h cos a( 1

7—a

tan a+1)

This is an equation for determining a.

Now I find that a=34° 30" gives p=8'983, which corresponds very nearly with p=9 of the text above.

This value of a corresponds with an average equal to *11654 for the height above water, and 1:0469%
for the depth below water. Now if we put

1:04692=23150 meters
which gives -11654=3850 meters very nearly,
we have h=23009 meters. ’

The depth below water-level of the mean level is & cos 34° 30’ or 2480 meters.

The greatest height of the dry part above the water-level is 8009—2480 or 429 meters, and the
greatest depth of the submerged part below water-level is 3009+ 2480 or 5489 meters.

[After the proof-sheets of this paper had been corrected, Professor Stokes pointed out to me that,
according to Rigaup (Cam. Phil. Soc., vol. 6), the area of land is about four-fifteenths of the whole area
of the earth’s surface. Now, in the ideal undulations we are here considering the area above water is
about one-tenth of the whole area; hence in this respect the analogy is not satisfactory between these
undulations and the terrestrial continents. If I have not considerably over-estimated the average depth
of the sea (and I do not think that I have done so0), the discrepancy must arise from the fact that actual
continents and sea-beds do not present in section curves which conform to the harmonic type; there must
also be a difference between corrugated spherical and plane surfaces.

The geological denudation of the land must, to some extent, render our continents flat-topped.—Added
May 4¢h, 1882.]

2 6 2
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the continents and sea-beds have sections which are harmonic curves, then if we
take,—

The mean level bisecting elevations and depressions as 2480 meters (8150 feet)
below the sea-level, and the greatest elevation and depression from that mean level as
3009 meters (9840 feet), it results that the average height of the land above sea-level
is 350 meters and the average depression of dried sea-bed is 3150 meters.

It thus appears that 3000 meters would be a proper greatest elevation and de-
pression to assume for the harmonic analysis of this paper, if the earth were
homogeneous. But as the density of superficial rocks is only a half of the mean
density of the earth, I shall take 1500 meters as the greatest elevation and depression
from the mean equilibrium spheroid of revolution.

Tt is proper here to note that the height of the undulations of elevation and depres-
sion in the zonal harmonic inequalities is considerably greater towards the poles than
it is about the equator; it might therefore be maintained that by making 1500 meters
the equatorial height, we are taking too high an estimate. But the state of stress
caused in the sphere at any point depends very much more on the height of the
inequality in the neighbourhood of a superficial point immediately over the point
considered, than it does on the inequalities in remote parts of the sphere.

Now in all the inequalities, except the 2nd harmonic, I have considered the state of
stress in the equatorial region, and it will therefore I think be proper to adhere to the
1500 meters for the greatest height and depression.

We have next to consider, what order of harmonic inequalities is most nearly
analogous to the great terrestrial continents and oceans. The most obvious case to
take is that of the two Americas and Africa with Europe. The average longitude of
the Americas is between 60° and 80° W., and the average longitude of Africa is about
25° K., hence there is a difference of longitude of about a right-angle between the two
masses. These two great continents would be more nearly represented by an harmonic
of the sectorial class,* rather than by a zonal harmonic, nevertheless I think the
solution for the zonal harmonic will be adequate for the present purpose.

Now it has been explained above that the harmonic of the fourth order represents
an equatorial continent and a pair of polar continents. In the case of the 4th
harmonic therefore there is a right angle of a great circle between contiguous con-
tinents. We may conclude from this that the large terrestrial inequalities are about
equivalent to the harmonic of the fourth order.

Table V. (b), § 7, gives the maximum stress-differences under the centre of the equa-
torial elevation of the several zonal harmonics, the height of each being 1500 meters.

# The sectorial harmonic of the fourth order sin? 6 cos 4¢ would well represent these two great cons
tinents. It would fairly represent China and Australia; but would annihilate the Himalayan plateau,
and place another great continent in mid-Pacific. It is not at all difficult to find the stress-difference
under the centre of a sectorial inequality, but to find it generally involves the solution of a cubic
equation.
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The point at which this maximum is reached is given in each case, and Plate 20, fig. 4,
illustrates graphically the law of variation of stress-difference.

The second harmonic cannot be said to represent a continent, and the table shows
that in each of the other cases the maximum stress-difference is very nearly 4 tons
per square inch. The depths of the maximum point are of course very different in
each case.

We have concluded above that Africa and America are about equivalent to an
harmonic of the fourth order, hence it may be concluded that the stress-difference
under those continents is at a maximum at more than 1100 miles from the earth’s
surface, and there amounts to about 4 tons per square inch. A comparison with
Table VIL shows that marble would break under this stress, but that strong granite
would stand.

The case of the isolated continent investigated in § 8 appeared likely to prove the
most interesting one, for the purpose of application to the case of the earth. But
unfortunately I have found it difficult to arrive at a satisfactory conclusion as to the
proper height to attribute to the continent.

The average height of the American continent is about 1100 feet above the sea, and
the average depth of the Pacific Ocean about 15,000 feet. If the water of the Pacific
be congealed into rock, it will have an effective depth of 10,000 feet. The greatest
height of the American continent above the bed of the dried Pacific when smoothed
down must be fully 12,000 feet or 3700 meters. The height of the great central
Asian plateau above the average bed of the southern ocean (after drying) must be
considerably more than this.

Now in the application to the homogeneous planet the heights are to be halved to
allow for the smaller density of surface rock.

I therefore take 2000 meters as the height of the top of the equatorial table-land
above the remaining approximately spherical portion of the sphere.

The investigation of § 8 then shows that the equatorial table-land will give rise to a,
stress-difference of 4'1 tons per square inch at a depth of 660 miles; and that the
equatorial table-land counterbalanced by the pair of polar continents (the second .
harmonic constituent being absent) gives a stress difference of about 3'8 tons per
square inch at a depth of 590 miles.

This estimate of stress-difference agrees in amount, with singular exactness, with
that just found from the case of the 4th zonal harmonic, but the maximum is reached
400 or 500 miles nearer to the earth’s surface.

I think there can be no doubt but that there are terrestrial inequalities of much
greater breadth than that of my isolated continent; thus this investigation for the
isolated continent will give a position for the maximum stress-difference too near the
surface to correspond with the largest continents. On the other hand, I do not feel
at all sure that I have not considerably underestimated the height of such a compara-
tively narrow plateau.
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In the present paper it has been impossible to take any notice of the stresses pro-
duced by the most fundamental inequality on the earth’s surface, because it depends
essentially on heterogeneity of density.

It is well known that the earth may be divided into two hemispheres, one of which
consists almost entirely of land, and the other of sea. If the south of England be
taken as the pole of a hemisphere, it will be found that almost the whole of the land,
excepting Australia, lies in that hemisphere, whilst the antipodal hemisphere consists
almost entirely of sea. This proves that the centre of gravity of the earth’s mass is
more remote from England, than the centre of figure of the solid globe.

A deformation of this kind is expressed by a surface harmonic of the first order, for
such an harmonic is equivalent to a small displacement of the sphere as a whole, with-
out true deformation. Now if we consider the surface forces produced by such a
deformation in a homogeneous sphere, we find of course that there is an unbalanced
resultant force acting on the whole sphere in the direction diametrically opposed to
that of the equivalent displacement of the whole sphere. ‘

The fact that in the homogeneous sphere such an unbalanced force exists shows that
in this case the problem is meaningless; it is in fact merely equivalent to a mischoice
in the origin for the coordinates. But in the case of the earth such an inequality does
exist, and the force referred to must of course be counterbalanced somehow. The
balance can only be maintained by inequalities of density, which are necessarily
unknown. The problem therefore apparently eludes mathematical treatment.

It is certain that so wide-spreading an inequality, even if not great in amount, must
produce great stress within the globe. And just as the 2nd harmonic produces a
more even distribution of stress than the 4th, so it is likely that the first would
produce a more even distribution than the 2nd.

It is difficult to avoid the conclusion that the whole of the solid portion of the earth
is in a sensible state of stress.

I would not however lay very much emphasis on this point, because we are in such
complete ignorance as to the manner in which the equilibrium of the solid part of the
earth is maintained.

From this discussion it appears that if the earth be solid throughout, then at a
thousand miles from the surface the material must be as strong as granite. If it be
fluid or gaseous inside, and the crust a thousand miles thick that crust must be
stronger than granite, and if only two or three hundred miles in thickness much
stronger than granite. This conclusion is obviously strongly confirmatory of Sir
WiLLiaM TaOMSON'S view that the earth is solid throughout.
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